Journal Papers Published

* Indicates Highly Qualified Personnel trained at TF-LAB

† Indicates Corresponding Author

  1. *M. Saleh, *A. Elkholy, G.W. Melenka, †R. Kempers (2023) “Heat Flux Measurement using 3D-Printed Continuous Wire Polymer Composite Sensors” Case Studies in Thermal Engineering (In Press) https://doi.org/10.1016/j.csite.2023.102739
  2. *A. Elkholy, J. Durfee, J.P. Mooney, A.J. Robinson, †R. Kempers (2023) “A Rate of Rise Facility for Measuring Properties of Wick Structures” Measurement Science and Technology, 34, 045301. https://doi.org/10.1088/1361-6501/acad1c
  3. *A. Elkholy, J. Swift, †R. Kempers (2023) “Improvement of Pool Boiling Heat Transfer using Hook-Shaped Structures” Applied Thermal Engineering, 219, 119665. https://doi.org/10.1016/j.applthermaleng.2022.119665
  4. *S. Olcun, *Y. Ibrahim, *C. Isaacs, *M. Karam, *A. Elkholy, †R. Kempers (2022) “Thermal Conductivity of 3D-Printed Continuous Pitch Carbon Fiber Composites” Additive Manufacturing Letters, 4, 100106. https://doi.org/10.1016/j.addlet.2022.100106
  5. *Milad Shakeri Bonab, Christophe Minetti, Carlo Saverio Iorio, Zhao Dongdong, Qiu-Sheng Liu, Junfang Ou, R. Kempers, †Alidad Amirfazli (2022) “Experimental Investigation of Dropwise Condensation Shedding by Shearing Airflow in Microgravity Using Different Surface Coatings” Langmuir. https://doi.org/10.1021/acs.langmuir.2c01898
  6. *O. Khaled, J. Swift, †R. Kempers (2022) “Thermal enhancement of rectangular channels using hook-shaped fins and dimples” Applied Thermal Engineering, 217, 119272. https://doi.org/10.1016/j.applthermaleng.2022.119272
  7. *M. Saleh, R. Kempers, †G.W. Melenka (2022) “Fatigue Behaviour and Electromechanical Properties of Additively Manufactured Continuous Wire Polymer Composites for Structural Health Monitoring” Fatigue and Fracture of Engineering Materials and Structures, 45 (9), pp. 2630-2645. https://doi.org/10.1111/ffe.13778
  8. A.J. Robinson, J. Colenbrander, D. Carballo, T. Deaville, J. Durfee, †R. Kempers (2022) “Simplified Methods for Characterizing Thermal Parameters of High-Power Automotive LEDs” Case Studies in Thermal Engineering, 35, 102157. https://doi.org/10.1016/j.csite.2022.102157
  9. *A. Elkholy, Paul Quinn, Sinéad M. Uí Mhurchadha, †Ramesh Raghavendra, R. Kempers (2021) “Characterization and Analysis of the Thermal Conductivity of AlSi10Mg Fabricated by Laser Powder Bed Fusion” Journal of Manufacturing Science and Engineering, 144 (10), 101001. https://doi.org/10.1115/1.4054491
  10. *A. Elkholy, †R. Kempers (2022) “An Accurate Steady-State Approach for Characterizing the Thermal Conductivity of Additively Manufactured Polymer Composites” Case Studies in Thermal Engineering, 31, 101829. https://doi.org/10.1016/j.csite.2022.101829
  11. *Y. Ibrahim, †R. Kempers, (2022) “Effective Thermal Conductivity of 3D-Printed Continuous Wire Polymer Composites” Progress in Additive Manufacturing, 7, pp. 699-712, https://doi.org/10.1007/s40964-021-00256-5
  12. *A. Elkholy, *C. Unlusoy, †R. Kempers (2022) “Thermal Performance of a Two-Phase Loop Thermosyphon with an Additively Manufactured Evaporator” Applied Thermal Engineering, 202, pp. 117692. https://doi.org/10.1016/j.applthermaleng.2021.117692
  13. A.J. Robinson, J. Colenbrander, T. Deaville, J. Durfee, †R. Kempers (2021) “A Wicked Heat Pipe Fabricated Using Metal Additive Manufacturing” International Journal of Thermofluids, 12, pp. 100117, https://doi.org/10.1016/j.ijft.2021.100117
  14. *M. Saleh, R. Kempers, †G.W. Melenka (2021) “A Comparative Study on the Electromechanical Properties of 3D-Printed Rigid and Flexible Continuous Wire Polymer Composites for Structural Health Monitoring” Sensors and Actuators A: Physical, 328, pp. 112764. https://doi.org/10.1016/j.sna.2021.112764
  15. *M. Shakeri-Bonab, R. Kempers, †A. Amirfazli (2021) “Determining Transient Heat Transfer Coefficient for Dropwise Condensation in the Presence of an Air flow” International Journal of Heat and Mass Transfer, 173, pp. 121278. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121278
  16. *A. Elkholy, †R. Kempers (2020) “Experimental Investigation of Geyser Boiling in a Small Diameter Two-Phase Loop Thermosyphon” Experimental Thermal and Fluid Science, 118, pp. 110170. https://doi.org/10.1016/j.expthermflusci.2020.110170
  17. †A. Robinson, J. Colenbrander, G. Byrne, P. Burke, J. McEvoy, R. Kempers (2020) “Passive Two-Phase Cooling of Air Circuit Breakers in Data Center Power Distribution Systems” International Journal of Electrical Power & Energy Systems, 121, pp. 106138. https://doi.org/10.1016/j.ijepes.2020.106138
  18. †R. Kempers, J. Colenbrander, W. Tan, R. Chen, A.J. Robinson (2020) “Experimental Characterization of a Hybrid Impinging Microjet-Microchannel Heat Sink Fabricated using High-Volume Metal Additive Manufacturing” International Journal of Thermofluids, 5-6, pp.100029. https://doi.org/10.1016/j.ijft.2020.100029
  19. *A. Elkholy, †R. Kempers (2020) “Enhancement of Pool Boiling Heat Transfer using 3D-Printed Polymer Fixtures” Experimental Thermal and Fluid Science, 114, pp. 110056. https://doi.org/10.1016/j.expthermflusci.2020.110056
  20. *Y. Ibrahim, *A. Elkholy, J. Schofield, G.W. Melenka, †R. Kempers (2020) “Effective Thermal Conductivity of 3D-Printed Continuous Fiber Polymer Composites” Advanced Manufacturing: Polymer and Composites Science, 6, pp.17-28. https://doi.org/10.1080/20550340.2019.1710023
  21. *A. Elkholy, M. Rouby, †R. Kempers (2019) “Characterization of the Anisotropic Thermal Conductivity of Additively Manufactured Components by Fused Filament Fabrication” Progress in Additive Manufacturing, 4, 497-515. https://doi.org/10.1007/s40964-019-00098-2
  22. *Y. Ibrahim, R. Kempers, †A. Amirfazli (2019) “3D Printed Electro-Thermal Anti- or De-Icing System for Composite Panels” Cold Regions Science and Technology, 166, pp. 102844. https://doi.org/10.1016/j.coldregions.2019.102844
  23. *Y. Ibrahim, G.W. Melenka, †R. Kempers (2019) “Flexural Properties of Three-Dimensional Printed Continuous Wire Polymer Composites” Materials Science and Technology, 35, pp.1471-1482. https://doi.org/10.1080/02670836.2019.1630085
  24. *M. Saleh, R. Kempers, †G.W. Melenka (2019) “3D Printed Continuous Wire Polymer Composites Strain Sensors for Structural Health Monitoring” Smart Materials and Structures, 28, pp. 105041. https://doi.org/10.1088/1361-665X/aafdef
  25. *A. Elkholy, H. Sadek, †R. Kempers, (2019) “An Improved Transient Plane Source Technique and Methodology for Measuring the Thermal Properties of Anisotropic Materials” International Journal of Thermal Science, 135, pp.362-374. https://doi.org/10.1016/j.ijthermalsci.2018.09.021
  26. *Y. Ibrahim, G. W. Melenka, †R. Kempers, (2018) “Fabrication and tensile testing of 3D printed continuous wire polymer composites”, Rapid Prototyping Journal, 24, pp.1131-1141. https://doi.org/10.1108/RPJ-11-2017-0222
  27. *Y. Ibrahim, G.W. Melenka, †R. Kempers (2018) “Additive Manufacturing of Continuous Wire Polymer Composites” Manufacturing Letters, 16, pp. 49-51. https://doi.org/10.1016/j.mfglet.2018.04.001
  28. †A.J. Robinson, J. Colenbrander, R. Kempers, R. Chen (2018) “Solid and Vapour Chamber Integrated Heat Spreaders: Which to Choose and Why” IEEE Transactions on Components, Packaging and Manufacturing Technology, 8, pp.1581-1592. https://doi.org/10.1109/TCPMT.2018.2822400
  29. †A.J. Robinson, R. Kempers, J. Colenbrander, N. Bushnell, R. Chen (2018) “A Single Phase Hybrid Micro Heat Sink Using Impinging Micro-Jet Arrays and Microchannels” Applied Thermal Engineering, 136, pp. 408-418. https://doi.org/10.1016/j.applthermaleng.2018.02.058
  30. *K. Smith, R. Kempers, †A.J. Robinson (2018) “Confinement and Vapour Production Rate Influences in Closed Two-Phase Reflux Thermosyphons Part A: Flow Regimes” International Journal of Heat and Mass Transfer, 119, pp. 907-921. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.049
  31. *K. Smith, A.J. Robinson, †R. Kempers (2018) “Confinement and Vapour Production Rate Influences in Closed Two Phase Reflux Thermosyphons Part B: Heat Transfer” International Journal of Heat and Mass Transfer, 120, pp. 1241-1254. https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.046
  32. C. de Brún, R. Jenkins, T. Lupton, R. Lupoi, R. Kempers, †A.J. Robinson, (2017) “Confined Jet Array Impingement Boiling” Experimental Thermal and Fluid Science, 86, pp. 224-234. https://doi.org/10.1016/j.expthermflusci.2017.04.002
  33. R. Jenkins, R. Lupoi, R. Kempers, †A.J. Robinson, (2017) “Heat Transfer Performance of Boiling Jet Array Impingement on Micro-Grooved Surfaces” Experimental Thermal and Fluid Science, 80, pp. 293-304. https://doi.org/10.1016/j.expthermflusci.2016.08.006
  34. R. Jenkins, C. de Brún, R. Kempers, R. Lupoi, †A.J. Robinson (2016) “Thermal-hydraulic performance of convective boiling jet array impingement” Journal of Physics: Conference series, 745, pp.032120, https://doi.org/10.1088/1742-6596/745/3/032120
  35. E.V. Sempels, R. Kempers, †F.J. Lesage, (2016) “Load-bearing Figure-of-Merit Characterization of a Thermoelectric Module” IEEE Transactions on Components, Packaging and Manufacturing Technology, 6, pp. 50-57, https://doi.org/10.1109/TCPMT.2015.2501321
  36. A.J. Robinson, A.M. Lyons, †R. Kempers, (2016) “Modelling the Effective Thermal Conductivity of Compressing Structures Including Contact Resistance” Simulation Modelling Practice and Theory, 67, pp. 74-88, https://doi.org/10.1016/j.simpat.2016.06.003
  37. *K. Smith, G. Byrne, R. Kempers, †A.J. Robinson (2016) “Electrohydrodynamic Augmentation of a Reflux Thermosyphon” Experimental Thermal and Fluid Science, 79, pp. 175-186, https://doi.org/10.1016/j.expthermflusci.2016.07.003
  38. *K. Smith, *S. Siedel, A.J. Robinson, †R. Kempers, (2016) “The Effects of Bend Angle and Fill Ratio on the Performance of a Naturally Aspirated Thermosyphon,” Applied Thermal Engineering, 101, pp. 455-467, https://doi.org/10.1016/j.applthermaleng.2016.01.024
  39. †R. Kempers, A. Lyons & A.J. Robinson, (2014) “Modeling and Experimental Characterization of Metal Micro-Textured Thermal Interface Materials” Journal of Heat Transfer, 136, pp. 011301-1-011301-11 https://doi.org/10.1115/1.4024737
  40. *K. Smith, *S. Siedel, A.J. Robinson, †R. Kempers, (2014) “Visual Study of Fluid Dynamics in Wickless Transparent Heat Pipes” Heat Pipe Science and Technology, An International Journal, 5, pp. 161-167. https://doi.org/10.1615/HeatPipeScieTech.v5.i1-4.150
  41. *K. Smith, *S. Siedel, A.J. Robinson, †R. Kempers, (2014) “Investigation of Thermosyphon Performance with Changing Adiabatic Section Geometry” Heat Pipe Science and Technology, An International Journal, 5, pp. 231-236. https://doi.org/10.1615/HeatPipeScieTech.v5.i1-4.240
  42. †R. Kempers, P. Ahern, A.J. Robinson, A.M. Lyons, (2012) “Modeling the Compressive Deformation of Metal Micro-Textured Thermal Interface Materials using SEM Geometry Reconstruction” Computers and Structures, 92-93, pp. 216-228. https://doi.org/10.1016/j.compstruc.2011.11.001
  43. B.P. Whelan, R. Kempers, †A.J. Robinson, (2012) “A Liquid-Based System for CPU Cooling Implementing a Jet Array Impingement Waterblock and a Tube Array Remote Heat Exchanger” Applied Thermal Engineering, 39, pp. 86-94. https://doi.org/10.1016/j.applthermaleng.2012.01.013
  44. †R. Kempers, A.J. Robinson, A. Lyons, (2010) “Characterization of Thermal Contact Resistance in Metal Micro-Textured Thermal Interface Materials using Electrical Contact Resistance Measurements” Defect and Diffusion Forum Vols. 297-301 pp. 1190-1198. https://doi.org/10.4028/www.scientific.net/DDF.297-301.1190
  45. †D. Hernon, T. Salamon, R. Kempers, S. Krishnan, A. Lyons, M. Hodes, P. Kolodner, J. Mullins, L. McGarry, (2009) “Thermal Management: Enabling Enhanced Functionality and Reduced Carbon Footprint” Bell Labs Technical Journal 14(3), pp. 7–20. https://doi.org/10.1002/bltj.20385
  46. †R. Kempers, P. Kolodner, A. Lyons, A.J. Robinson, (2009) “A High-Precision Apparatus for the Characterization of Thermal Interface Materials” Review of Scientific Instruments, 80, 095111. https://doi.org/10.1063/1.3193715
  47. R. Kempers, A.J. Robinson, D. Ewing, †C.Y. Ching, (2008) “Characterization of Evaporator and Condenser Thermal Resistances in a Screen Mesh Wicked Heat Pipe”, International Journal of Heat and Mass Transfer, 51, pp. 6039-6046. https://doi.org/10.1016/j.ijheatmasstransfer.2008.04.001
  48. R. Kempers, D. Ewing, †C.Y. Ching, (2006) “Effect of Number of Mesh Layers and Fluid Loading on the Performance of Screen Mesh Wicked Heat Pipes”, Applied Thermal Engineering, 26, pp. 589-595. https://doi.org/10.1016/j.applthermaleng.2005.07.004